A comparative study of ANN and Neuro-fuzzy for the prediction of dynamic constant of rockmass

نویسندگان

  • T N Singh
  • R Kanchan
  • K Saigal
چکیده

Physico–mechanical properties of rocks have great significance in all operational parts in mining activities, from exploration to final dispatch of material. Compressional wave velocity (p-wave velocity) and anisotropic behaviour of rocks are two such properties which help to understand the rock response under varying stress conditions. They also influence the breakage mechanism of rock. There are different methods to determine the p-wave velocity and anisotropy in situ and in the laboratory. These methods are cumbersome and time consuming. Fuzzy set theory, Fuzzy logic and Neural Networks techniques seem very well suited for typical geotechnical problems. In conjunction with statistics and conventional mathematical methods, hybrid methods can be developed that may prove to be a step forward in modeling geotechnical problems. Here, we have developed and compared two different models, Neuro-fuzzy systems (combination of fuzzy and artificial neural network systems) and Artificial neural network systems, for the prediction of compressional wave velocity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements

In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...

متن کامل

Adaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis

The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...

متن کامل

A COMPARATIVE STUDY OF TRADITIONAL AND INTELLIGENCE SOFT COMPUTING METHODS FOR PREDICTING COMPRESSIVE STRENGTH OF SELF – COMPACTING CONCRETES

This study investigates the prediction model of compressive strength of self–compacting concrete (SCC) by utilizing soft computing techniques. The techniques consist of adaptive neuro–based fuzzy inference system (ANFIS), artificial neural network (ANN) and the hybrid of particle swarm optimization with passive congregation (PSOPC) and ANFIS called PSOPC–ANFIS. Their perf...

متن کامل

Prediction of Thermal performance nanofluid Al2O3 by Artificial Neural Network and Adaptive Neuro-Fuzzy Inference Systemt

In recent years, the use of modeling methods that directly utilize empirical data is increasing due to the high accuracy in predicting the results of the process, rather than statistical methods. In this paper, the ability of Artificial Neural Network (ANN) and Adaptive Fuzzy-Neural Inference System (ANFIS) models in the prediction of the thermal performance of Al2O3 nanofluid that is measured ...

متن کامل

Prediction and Optimization of the Effects of Combining Ultrasonic Waves and Solvent on the Viscosity of Residue Fuel Oil by ANN and ANFIS

In the present work, the influences of temperature, solvent concentration and ultrasonic irradiation time were numerically analyzed on viscosity reduction of residue fuel oil (RFO). Ultrasonic irradiation was applied at power of 280 W and low frequency of 24 kHz. The main feature of this research is prediction and optimization of the kinematic viscosity data. The measured results of eighty-four...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005